Annexin A1 attenuates EMT and metastatic potential in breast cancer
نویسندگان
چکیده
Metastasis is the major cause of carcinoma-induced death, but mechanisms involved are poorly understood. Metastasis crucially involves epithelial-to-mesenchymal transition (EMT), causing loss of epithelial polarity. Here we identify Annexin A1 (AnxA1), a protein with important functions in intracellular vesicle trafficking, as an efficient suppressor of EMT and metastasis in breast cancer. AnxA1 levels were strongly reduced in EMT of mammary epithelial cells, in metastatic murine and human cell lines and in metastatic mouse and human carcinomas. RNAi-mediated AnxA1 knockdown cooperated with oncogenic Ras to induce TGFβ-independent EMT and metastasis in non-metastatic cells. Strikingly, forced AnxA1 expression in metastatic mouse and human mammary carcinoma cells reversed EMT and abolished metastasis. AnxA1 knockdown stimulated multiple signalling pathways but only Tyk2/Stat3 and Erk1/2 signalling were essential for EMT.
منابع مشابه
Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells.
Annexin A1 (AnxA1) is a candidate regulator of the epithelial- to mesenchymal (EMT)-like phenotypic switch, a pivotal event in breast cancer progression. We show here that AnxA1 expression is associated with a highly invasive basal-like breast cancer subtype both in a panel of human breast cancer cell lines as in breast cancer patients and that AnxA1 is functionally related to breast cancer pro...
متن کاملAnnexin A1 Preferentially Predicts Poor Prognosis of Basal-Like Breast Cancer Patients by Activating mTOR-S6 Signaling
INTRODUCTION Annexin A1 (ANXA1) is an anti-inflammatory protein reported to play a role in cell proliferation and apoptosis, and to be deregulated in breast cancer. The exact role of annexin A1 in the biology of breast cancer remains unclear. We hypothesized that the annexin A1 plays an oncogenic role in basal subtype of breast cancer by modulating key growth pathway(s). METHODS By mining the...
متن کاملDown-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer
Reduced epithelial cadherin (E-cad) is a hallmark of invasive carcinomas that have acquired epithelial-mesenchymal transition (EMT) phenotypes. Here we show that down-regulated E-cad expression induced by transforming growth factor-β (TGF-β) and EMT preceded breast cancer outgrowth in three-dimensional (3D) organotypic assays and in the lungs of mice. Pharmacological inhibitors against focal ad...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملInterplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells
Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodst...
متن کامل